Control: Controllability and Observability

ENGINEERING CONTROL

The state space equations are given by:

\begin{align*} x'(t) = Ax(t) + Bu(t)\\ y(t) = Cx(t) + Du(t) \end{align*}

If we discretize the system, the equation can be written as:

\begin{align*} x(n+1) = A_dx(n) + B_du(n)\\ y(n) = C_dx(n) + D_du(n) \end{align*}

The discretization steps can be found here:discretization

Controllability

A system is said to be controllable if the state can be changed by changing the inputs.

Using the discretized equation, we can come up with the following:

\begin{align*} x(1) &= A_dx(0) + B_du(0)\\ x(2) &= A_dx(1) + B_du(1) = A_d^2 x(0) + A_dB_du(0) + B_du(1)\\ .\\ x(n) &= A_d^n x(0) + A_d^{n-1}B_du(0) + A_d^{n-2}B_du(1) + ... + B_du(n-1) \end{align*}

The last equation can be written as:

\begin{equation*} x(n) - A_d^n x(0)= \begin{bmatrix} B_d & A_dB_d & A_d^2B_d & ... & A_d^{n-2}B_d & A_d^{n-1}B_d \end{bmatrix} * \begin{bmatrix} u(n-1) \\ . \\ . \\ . \\u(2) \\ u(1) \\ u(0) \end{bmatrix} \end{equation*}

Replacing with the controllability matrix with C, we get:

\begin{align*} x(n) - A_d^n x(0) = C * U \\ \therefore\\ U = C^{-1} * (x(n) - A_d^n x(0)) \end{align*}

This means that the equation is solvable when \(C^{-1}\) exists, i.e. its a non singular matrix.

Therefore a system is controllable when:

\begin{equation*} \begin{bmatrix} B_d & A_dB_d & A_d^2B_d & ... & A_d^{n-2}B_d & A_d^{n-1}B_d \end{bmatrix} \end{equation*}

has a determinant.

Observability

Using the discretized equation too:

\begin{align*} y(0) = C_dx(0)\\ y(1) = C_dx(1) = C_dA_dx(0)\\ y(2) = C_dx(2) = C_dA_d^2x(0) \\ y(n) = C_dx(n) = C_dA_d^nx(0) \end{align*}

This can be written as:

\begin{equation*} \begin{bmatrix} y(0)\\y(1)\\y(2)\\.\\y(n) \end{bmatrix} = \begin{bmatrix} C_d \\ C_dA_d \\ C_dA_d^2 \\ . \\C_dA_d^n \end{bmatrix} * x(0) \end{equation*}

The observability matrix is:

\begin{equation*} \begin{bmatrix} C_d \\ C_dA_d \\ C_dA_d^2 \\ . \\C_dA_d^n \end{bmatrix} \end{equation*}

And the systems has a unique solution if the system has a rank n. If the system is a square matrix, the solution is of rank n if the determinant is not 0.

The observability and controllability derivations can be found from here:rutgers